


Entity Graphs in Biology
A construction and exploration of methods for useful large-scale data mining 
in massive document corpuses leveraging MapReduce and network analysis.

In recent years, advances in computational power and programming methodology 
have made it possible to glean actionable insight from gigantic sources of 
information.  Simultaneously, the rise of the World Wide Web and more recent 
efforts to provide open access to humanity’s accumulated knowledge have made 
such datasets easily available to the public for the first time. New methods for 
understanding these datasets and extracting the wealth of knowledge they 
contain are sorely needed.

In Part I of this paper we describe an intuitive graph construction and associated 
parallel algorithms for deriving detailed network structure from a massive 
annotated document corpus.  Part I also contains our experiences with 
optimizations capable of making these networks more useful in practice.  In Part 
II we use such a structure to answer useful questions about the PubMed Abstract 
corpus, which contains more than 11 million research abstracts.  Finally we 
present techniques for future study and a conclusion.

Part I: Constructing an Entity Graph

Entity Graphs

In this paper, the term “Entity Graph” refers to a specific formulation of a 
weighted, undirected graph based on intersecting subsets.  In the graph all nodes 
represent subsets and all edges represent the intersection sets between the nodes.  
For example: if node A represents the numbers {1, 2} and node B represents the 
numbers {2, 3}, then an edge E of weight 1 exists between them representing 
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their non-empty intersection ({2}).1  In this way, we can build connectivity 
networks in data domains where such network connectivity is not immediately 
obvious.  Such a domain can be found in large bodies of text.  In this paper, we 
use the following terminology:

•Corpus: a collection of human knowledge on a specific topic, typically in 
text form.  In this paper, our corpus is the entire publicly available set of 
biological research paper abstracts on PubMed.  This corpus comprises 
approximately 11 million abstracts.

•Document: a specific part of a corpus, typically pertaining to a specific 
topic with distinct authorship.  Here, a document is the standard XML 
representation of a PubMed research paper abstract (not the full text of the 
paper itself).

•Entity: a specific term or concept that can be extracted from a document.  
For example, the entities present in a painting could be the colors used by 
the artist.  Here, our entities are terms in each abstract’s “ChemicalList” and 
“MeshHeading” section.

Given these definitions, two subset-based network constructions from the corpus 
become apparent:

•Document-centric: Each node is the subset of entities present in each 
document.  Thus, if the corpus contains n documents there will be exactly n 
nodes.  The edges represent common entities that are shared between 
documents.  If two documents share k entities, then an edge of weight k 
exists between their nodes.
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•Entity-centric: This construction is the inverse of the previous one.  Each 
node represents an entity.  If all of the documents in the corpus contain in 
total m entities then there will be precisely m nodes in the graph.  An edge 
between node i and node j of weight k represents the k documents that 
contain both entities i and j.  For the purposes of this paper, we define this 
construction as an “Entity Graph”.

In this paper we focus primarily on entity-centric graphs, but document-centric 
graphs are likely just as interesting, albeit for different analytical purposes.  All of 
the same algorithms and techniques are still applicable.

The Importance of Scalability

A crucial benefit of the construction used in this paper is that the algorithms 
involved naturally scale to meet the processing requirements of gigantic corpuses.  
To prove this point, all processing done in constructing the PubMed entity graphs 
was implemented using the MapReduce framework2 originally developed by 
Google.  More specifically, all computation was done using Dumbo, a Python-
language framework for the Hadoop open-source MapReduce implementation.

Within this model, the programmer specifies multiple steps of “mapping” the 
input into (key, value) tuples and “reducing” groups of these tuples in the form 
(key, [all values for the key]) into output tuples.  The benefit of this approach is 
that both the mapping and the reducing operations can be done in parallel by 
hundreds or thousands of machines, allowing programs to process many terabytes 
of input simultaneously.  For many years, this programming model powered the 
core search functionality of Google itself.  Certain operations required for 
constructing Entity Graphs (such as edge-pairing or inverting a very large index) 
would be very difficult for a traditional sequential program, but can be 
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accomplished in minutes on even a modest MapReduce cluster.3  Large clusters 
can be rented remotely for very low cost using a cloud-based service such as 
Amazon EC2, making gargantuan data processing tasks nearly effortless for even 
the smallest of budgets.

Constructing an Entity Graph

The steps for constructing the graphs used in this paper are detailed below:

1. Parse the XML dump using a declarative parsing style to save on 
memory4.  For each document, emit a line with the document’s PubMed 
ID (PMID), title, and a list of the entities found in the ChemicalList and 
MeshHeading sections.  The collection of these records provides a one-to-
many mapping between PMID and entity list and is hereafter referred to 
as a “document list”.

2. If entity post-processing (as detailed in the next section) is desired, use 
MapReduce to invert the document list mapping into an “entity list” 
mapping of entity to documents.  Inverting the document list using 
MapReduce is simple: for each document and each entity within it, emit a 
tuple of the form (entity, PMID) and reduce the resulting collection of 
(entity, [PMID list]) into a single record in the new entity list.  After any 
applicable entity post-processing, invert the entity list back into a 
document list.  For efficiency reasons, it may be advantageous to convert 
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each entity into a numerical hash representation.  This allows uniform 
entity size and may improve MapReduce throughput.

3. With the final document list in hand, use another MapReduce operation to 
construct the edges of the entity graph.  The “map” function emits tuples 
of the form ((ei, ej), p) for each 2-combination of entities that belong to 
the document with PMID p.  The “reduce” function thus takes as input the 
tuple ((ei, ej), [list of PMIDs]) and can emit as output an edge from node 
i to node j consisting of the given list of PMIDs with weight w equal to the  
size of the list.  This list of edges represents the entire Entity Graph and 
can now be filtered or loaded into any network analysis platform.5

An Optimization: Efficient Entity Clustering Using Simple Natural 
Language Processing

Depending on the robustness of the entity-extraction process, it can be useful to 
perform an additional processing step to merge similar entities into a single 
entity.  This helps reduce the size and density of the graph and can potentially 
increase its usefulness.

Some examples where such a process could be useful are: 

1. Variants of the same entity across common laboratory species: 
the entities “collagen, rat” and “collagen, human” should be collapsed into 
the single entity, “collagen”.

2. Trivially different parts of speech: the entities “cancerous growth” and 
“cancer growing” should be one entity.

3. Organic compounds with similar IUPAC nomenclature: Many 
research-worthy compounds/drugs have slight differences in configuration 
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but could conceivably be grouped together.  For example, the two isomers 
of propanol could be stated in the literature as propan-1-ol and propan-2-
ol, and (depending on our analytical intent) can be merged.  This is a 
simplified approach to a difficult problem. The computational knowledge 
representation required to merge organic compounds at a given granularity 
is beyond the scope of this paper.

A process that accomplishes these three goals was performed on the PubMed 
entities and was able to reduce the size of the set by approximately 30 percent.  
The exact process used is as follows:

1. Specify a peer-reviewed stemming function from NLP literature.  This 
function takes strings, such as “fishing” and “fished” and returns the 
common root “fish”.  The stemming function used here is the Lancaster 
stemming algorithm.6

2. Build a biologically-relevant list of “stopwords” which contain very little 
entity-specific information.  The one used here was built with the top 1000 
most frequent words from the entity list (e.g. “enzyme”, “protein”), 
combined with distinct common chunks from IUPAC nomenclature 
(“methyl”, “III”), and a list of the 20 most common laboratory species’ 
common and scientific names (“rat”, “rattus norvegicus”).  After compiling 
the list, process it by stemming each word.

3. In the entity, replace all non-alphabetic characters with spaces.  Split the 
resulting string by whitespace into tokens.  Stem each token and check to 
see if it is on the stopwords list.  If it is, remove it from the entity.  Rejoin 
the tokens by a single space.

Noon 7

6 http://www.comp.lancs.ac.uk/computing/research/stemming

http://www.comp.lancs.ac.uk/computing/research/stemming/
http://www.comp.lancs.ac.uk/computing/research/stemming/


Part II: Analytical Methods
Given the construction in Part I, we can now begin to ask new kinds of questions 
about our data.  In this section, we will outline a few of these questions and 
provide sample techniques that attempt to answer them for the PubMed abstract 
corpus.

An Overview of the PubMed Entity Graph

• Number of nodes: 40,180

• Number of edges: 33,464,657

• Average node degree: 1665.74

• Average edge weight: 76.0

• Clustering coefficient: 0.82987
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The raw Entity Graph is extremely dense, with both the degree distribution and 
the weight distribution showing a clear power-law distribution.

What are the most important entities in the corpus?

Network analysis provides us several tools for determining the “most important” 
nodes in a given topology.

• k-Cores: A k-core of a graph G is defined as “a maximal connected 
subgraph of G in which all vertices have degree at least k.”8  In the PubMed 
Entity Graph, the maximal value of k is 424, the graph of which has 736 
nodes.
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The 424-core of the PubMed Entity Graph with the weakest 99.99% of edges removed along 
with any singleton nodes.
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• PageRank: PageRank is a link-analysis algorithm that formed the original 
basis for Google’s search engine.  It uses linear algebra to weight the relative 
importance of nodes in a graph based on the way they link to each 
other. 

Entity Stem PageRank

metabol 0.11218

genet 0.06375

physiolog 0.03534

pharmacolog 0.03362

chem 0.03022

effect 0.02503

immunolog 0.02062

anim 0.01826

mal 0.01600

fem 0.01582

• Betweenness Centrality: Betweenness Centrality is the fraction of all of 
the shortest paths between all pairs of nodes that pass through a given 
node.  For the subgraph of PubMed composed of nodes involving common 
cellular components, we see the following BC scores:

Entity Stem Centrality

mitochondr 0.046

ribosom 0.043

The top 10 nodes in the PageRank computed on the top 1% of the PubMed graph.
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Entity Stem Centrality

cytoplasm nuclear 0.025

nucle 0.023

suprachiasm nucle 0.018

paraventricul hypothalam nucle 0.014

rna ribosom 0.013

ribosom kda 0.010

lysosom 0.006

ribosom inact 0.005

Given a set of entities, which papers have the most information about 
them?

We can solve this problem with the following algorithm:

1. Let the set E be the set of entities we are interested in.

2. For all unique pairs of entities in E, find the shortest path between the 
nodes in the pair.  Take the union of all the nodes in each path as Ecover.  
This is the minimal set of nodes required to have a single connected 
component containing all of the entities in E.

3. Take the subgraph G’ of entity graph G that contains only nodes (and 
edges to nodes) in Ecover.

The top 10 nodes of the entity subgraph composed of cell-components ranked by their 
betweenness-centrality.  This shows that ribosomes and mitochondria are the most important 

components in PubMed.
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4. Construct a mapping M from PMID to score.  For each paper in each edge 
of G’, add a score value S to that paper’s score in the mapping.  The 
papers with the highest scores are most connective of G’, and thus have 
the most information about the entity set E.

The score value S can (simply) be 1, making the score mapping a histogram.  
Alternatively, the score value can be multiplied by any beneficial attributes of the 
edge this paper was found in.  For example, we can reward a paper that links 
entities in E (our original query set) while penalizing a paper linking nodes in 
Ecover – E (the entities we added to connect our query set)9.  In addition, we can 
penalize or reward papers that link extremely popular (high degree) entities if we 
seek, respectively, to stray from or adhere to the “beaten path” in our search.

For the PubMed corpus, the test query was a list of 32 genetic diseases known to 
be linked to the X chromosome.  The top 20 results with score are:

Enhanced beta2-adrenergic receptor (beta2AR) signaling by adeno-associated viral 
(AAV)-mediated gene transfer.

155.0

Skin denervation and cutaneous vasculitis in eosinophilia-associated neuropathy. 126.0

FastEpistasis: a high performance computing solution for quantitative trait epistasis. 126.0

Effect of inoculum size on detection of Candida growth by the BACTEC 9240 
automated blood culture system using aerobic and anaerobic media.

126.0

Enlazin, a natural fusion of two classes of canonical cytoskeletal proteins, contributes to 
cytokinesis dynamics.

126.0

Root nodule Bradyrhizobium spp. harbor tfdAalpha and cadA, homologous with genes 
encoding 2,4-dichlorophenoxyacetic acid-degrading proteins.

126.0

HomozygosityMapper--an interactive approach to homozygosity mapping. 115.0

Diagnosis of X-linked lymphoproliferative disease by analysis of SLAM-associated 
protein expression.

110.0

Charcot-Marie-Tooth disease type 1B: marked phenotypic variation of the Ser78Leu 
mutation in five Italian families.

108.0
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Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated 
recombination events during evolution.

108.0

Lost in translation: translational interference from a recurrent mutation in exon 1 of 
MECP2.

108.0

Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and 
impaired spermatogenesis.

108.0

Temporal and regional differences in the olfactory proteome as a consequence of MeCP2 
deficiency.

108.0

Clinical, electrophysiological and molecular genetic characteristics of 93 patients with X-
linked Charcot-Marie-Tooth disease.

108.0

Influence of recipient and donor IL-1alpha, IL-4, and TNFalpha genotypes on the 
incidence of acute renal allograft rejection.

108.0

Elasticity and adhesion force mapping reveals real-time clustering of growth factor 
receptors and associated changes in local cellular rheological properties.

108.0

hMSH2 is the most commonly mutated MMR gene in a cohort of Greek HNPCC 
patients.

108.0

Analysis of clinical and molecular characteristics of Wiskott-Aldrich syndrome in 24 
patients from 23 unrelated Chinese families.

108.0

Accurate representation of the hepatitis C virus quasispecies in 5.2-kilobase amplicons. 108.0

Delay eyeblink classical conditioning is impaired in Fragile X syndrome. 96.0

Even a basic search (with very rudimentary entity resolution) and little-to-no 
parameter tuning produces results that find the implicit common feature in the 
input (X-linked diseases).

Given a concept, which concepts are most similar?

There are many ways to go about relating nodes to other nodes.  The simplest 
approach, which we will explore here, involves finding the node with the most 
similar set of direct connections.  The similarity metric used here is the Jaccard 

The top twenty paper results from running the algorithm on a query of 32 X-linked diseases.  
The results show that the Entity Graph construction is fully capable of identifying the 

biologically relevant properties of a query.
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similarity10 between our query node’s neighbor set and the neighbor set of every 
other node.

The results from running such a query (for the entity “laminin”) on the PubMed 
Entity Graph are below:

proteoglyc 0.5989
fibronectin 0.5794
cadherin 0.5356
cult med condit 0.5350
lymphokin 0.5043
platelet der 0.5005
tissu metalloproteinas 0.4988
extracellul matrix 0.4980
integrin 0.4918
cult med ser fre 0.4900
metalloendopeptidas 0.4869
catenin 0.4841
fluoresc techn indirect 0.4753
urokinas plasminog act 0.4728
keratinocyt 0.4704
cytoskeleton 0.4612
keratin 0.4598
cocult techn 0.4588
lin transform 0.4558
immunoenzym techn 0.4546

The results of a node similarity query for the entity “laminin”.
The results are very promising, with several of the top results being other 

glycoproteins or related structures.
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Future Work

Algorithms for the following problems have been contemplated but not yet 
verified on the PubMed Entity Graph.  Brief descriptions are provided here:

Given two entities, what are the best entities and papers that connect 
them?

This problem is somewhat isomorphic to the problem of finding the best papers 
for an entity subgraph mentioned previously.  Here, the subgraph in question is 
the shortest path on the Entity Graph between two entities of interest.  We then 
perform a similar best-fit computation on the papers in the edges of this path 
with similar heuristics as before.

Given a set of entities, what is the minimal set of papers that can give 
me information about all of them?

We can also efficiently compute the minimum spanning tree of all or part of the 
Entity Graph.  In this case, it is useful to set the weight of all edges to their 
reciprocal, so that the tree that can reach every node does so using the strongest 
document-based connections between entities.  We can then re-score the papers in 
the spanning tree with a similar process as described before.

Given an entity, which entities are most likely to be present with it in 
new research?

The answer to this question exploits triadic closures, an important concept from 
social network analysis.  Simply put, it has been observed11 that for three nodes 
{A, B, C} if there is a strong link between A and B and a strong link between B 
and C there there is usually a weaker (but significant) link between A and C.  
Thus, an algorithm for detecting which parts of the Entity Graph are likely to 
host new links would search for the strongest connection between 3 nodes where 
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two of them are not yet connected.  This model could be backtested by making 
multiple Entity Graphs for increasing time-slices and checking predicted growth 
versus real growth.

Network-Based Reporting

Finally, the topology yielded by the construction presented here could be merged 
with other existing datasets.  For example, financial reporting and planning could 
be accomplished by superimposing onto the Entity Graph the cost of the research 
grant for projects yielding the papers that compose its edges.  Naturally, this 
provides each node and edge an aggregate real-valued monetary cost.  Using this 
information we could easily compute which papers, projects, and concepts 
provided the most value (in terms of idea-space influence per dollar).  We could 
also compare research organizations’ capabilities and generate time-based reports 
detailing the effectiveness and impact of large-scale scientific initiatives.

Conclusion
In this paper, we have illustrated an efficient and versatile graph construction 
termed the “Entity Graph”.  We have provided outlines of the algorithms required 
to implement it in practice while addressing the importance of scalability and 
parallelism in the design of future metrics.  A usability heuristic involving natural 
language processing was also provided.  Finally, we described in detail a small set 
of analytical techniques that address important questions often asked (but seldom 
answered) about complex scientific data. Where possible we have also provided 
examples of these techniques being used in practice on one of the largest scientific 
datasets publicly available.  We have only begun to study the usefulness of these 
types of analyses and we look forward to refining our techniques in the future.
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