

Entity Graphs in Biology
A construction and exploration of methods for useful large-scale data mining
in massive document corpuses leveraging MapReduce and network analysis.

In recent years, advances in computational power and programming methodology
have made it possible to glean actionable insight from gigantic sources of
information. Simultaneously, the rise of the World Wide Web and more recent
efforts to provide open access to humanity’s accumulated knowledge have made
such datasets easily available to the public for the first time. New methods for
understanding these datasets and extracting the wealth of knowledge they
contain are sorely needed.

In Part I of this paper we describe an intuitive graph construction and associated
parallel algorithms for deriving detailed network structure from a massive
annotated document corpus. Part I also contains our experiences with
optimizations capable of making these networks more useful in practice. In Part
II we use such a structure to answer useful questions about the PubMed Abstract
corpus, which contains more than 11 million research abstracts. Finally we
present techniques for future study and a conclusion.

Part I: Constructing an Entity Graph

Entity Graphs

In this paper, the term “Entity Graph” refers to a specific formulation of a
weighted, undirected graph based on intersecting subsets. In the graph all nodes
represent subsets and all edges represent the intersection sets between the nodes.
For example: if node A represents the numbers {1, 2} and node B represents the
numbers {2, 3}, then an edge E of weight 1 exists between them representing

Noon 2

their non-empty intersection ({2}).1 In this way, we can build connectivity
networks in data domains where such network connectivity is not immediately
obvious. Such a domain can be found in large bodies of text. In this paper, we
use the following terminology:

•Corpus: a collection of human knowledge on a specific topic, typically in
text form. In this paper, our corpus is the entire publicly available set of
biological research paper abstracts on PubMed. This corpus comprises
approximately 11 million abstracts.

•Document: a specific part of a corpus, typically pertaining to a specific
topic with distinct authorship. Here, a document is the standard XML
representation of a PubMed research paper abstract (not the full text of the
paper itself).

•Entity: a specific term or concept that can be extracted from a document.
For example, the entities present in a painting could be the colors used by
the artist. Here, our entities are terms in each abstract’s “ChemicalList” and
“MeshHeading” section.

Given these definitions, two subset-based network constructions from the corpus
become apparent:

•Document-centric: Each node is the subset of entities present in each
document. Thus, if the corpus contains n documents there will be exactly n
nodes. The edges represent common entities that are shared between
documents. If two documents share k entities, then an edge of weight k
exists between their nodes.

Noon 3

1 Higher order subset constructions (simplicial complexes) are possible but are not discussed in
depth here. For example, if three nodes have a non-empty intersection we may draw a triangle
between all three of them.

•Entity-centric: This construction is the inverse of the previous one. Each
node represents an entity. If all of the documents in the corpus contain in
total m entities then there will be precisely m nodes in the graph. An edge
between node i and node j of weight k represents the k documents that
contain both entities i and j. For the purposes of this paper, we define this
construction as an “Entity Graph”.

In this paper we focus primarily on entity-centric graphs, but document-centric
graphs are likely just as interesting, albeit for different analytical purposes. All of
the same algorithms and techniques are still applicable.

The Importance of Scalability

A crucial benefit of the construction used in this paper is that the algorithms
involved naturally scale to meet the processing requirements of gigantic corpuses.
To prove this point, all processing done in constructing the PubMed entity graphs
was implemented using the MapReduce framework2 originally developed by
Google. More specifically, all computation was done using Dumbo, a Python-
language framework for the Hadoop open-source MapReduce implementation.

Within this model, the programmer specifies multiple steps of “mapping” the
input into (key, value) tuples and “reducing” groups of these tuples in the form
(key, [all values for the key]) into output tuples. The benefit of this approach is
that both the mapping and the reducing operations can be done in parallel by
hundreds or thousands of machines, allowing programs to process many terabytes
of input simultaneously. For many years, this programming model powered the
core search functionality of Google itself. Certain operations required for
constructing Entity Graphs (such as edge-pairing or inverting a very large index)
would be very difficult for a traditional sequential program, but can be

Noon 4

2 DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data processing on large clusters. In
Proc. of the 6th OSDI (Dec. 2004), pp. 137-150.

accomplished in minutes on even a modest MapReduce cluster.3 Large clusters
can be rented remotely for very low cost using a cloud-based service such as
Amazon EC2, making gargantuan data processing tasks nearly effortless for even
the smallest of budgets.

Constructing an Entity Graph

The steps for constructing the graphs used in this paper are detailed below:

1. Parse the XML dump using a declarative parsing style to save on
memory4. For each document, emit a line with the document’s PubMed
ID (PMID), title, and a list of the entities found in the ChemicalList and
MeshHeading sections. The collection of these records provides a one-to-
many mapping between PMID and entity list and is hereafter referred to
as a “document list”.

2. If entity post-processing (as detailed in the next section) is desired, use
MapReduce to invert the document list mapping into an “entity list”
mapping of entity to documents. Inverting the document list using
MapReduce is simple: for each document and each entity within it, emit a
tuple of the form (entity, PMID) and reduce the resulting collection of
(entity, [PMID list]) into a single record in the new entity list. After any
applicable entity post-processing, invert the entity list back into a
document list. For efficiency reasons, it may be advantageous to convert

Noon 5

3 In this project, the “cluster” consisted of a single quad-core workstation. The longest operation
(constructing the “full_term” graph) took approximately 1 day.

4 A handy technique is using one integer/string that denotes the current document being parsed,
one list that holds all of the entities we have found in the current document, and handful of
boolean values that denote which tags the current line is inside of. That way we can sanity-check
the XML and write the current document’s information to an output file when we get to the next
one.

each entity into a numerical hash representation. This allows uniform
entity size and may improve MapReduce throughput.

3. With the final document list in hand, use another MapReduce operation to
construct the edges of the entity graph. The “map” function emits tuples
of the form ((ei, ej), p) for each 2-combination of entities that belong to
the document with PMID p. The “reduce” function thus takes as input the
tuple ((ei, ej), [list of PMIDs]) and can emit as output an edge from node
i to node j consisting of the given list of PMIDs with weight w equal to the
size of the list. This list of edges represents the entire Entity Graph and
can now be filtered or loaded into any network analysis platform.5

An Optimization: Efficient Entity Clustering Using Simple Natural
Language Processing

Depending on the robustness of the entity-extraction process, it can be useful to
perform an additional processing step to merge similar entities into a single
entity. This helps reduce the size and density of the graph and can potentially
increase its usefulness.

Some examples where such a process could be useful are:

1. Variants of the same entity across common laboratory species:
the entities “collagen, rat” and “collagen, human” should be collapsed into
the single entity, “collagen”.

2. Trivially different parts of speech: the entities “cancerous growth” and
“cancer growing” should be one entity.

3. Organic compounds with similar IUPAC nomenclature: Many
research-worthy compounds/drugs have slight differences in configuration

Noon 6

5 The network analysis toolkit used in this paper was NetworkX, a very capable Python library
produced by Los Alamos National Laboratory and available at http://networkx.lanl.gov

http://networkx.lanl.gov/
http://networkx.lanl.gov/

but could conceivably be grouped together. For example, the two isomers
of propanol could be stated in the literature as propan-1-ol and propan-2-
ol, and (depending on our analytical intent) can be merged. This is a
simplified approach to a difficult problem. The computational knowledge
representation required to merge organic compounds at a given granularity
is beyond the scope of this paper.

A process that accomplishes these three goals was performed on the PubMed
entities and was able to reduce the size of the set by approximately 30 percent.
The exact process used is as follows:

1. Specify a peer-reviewed stemming function from NLP literature. This
function takes strings, such as “fishing” and “fished” and returns the
common root “fish”. The stemming function used here is the Lancaster
stemming algorithm.6

2. Build a biologically-relevant list of “stopwords” which contain very little
entity-specific information. The one used here was built with the top 1000
most frequent words from the entity list (e.g. “enzyme”, “protein”),
combined with distinct common chunks from IUPAC nomenclature
(“methyl”, “III”), and a list of the 20 most common laboratory species’
common and scientific names (“rat”, “rattus norvegicus”). After compiling
the list, process it by stemming each word.

3. In the entity, replace all non-alphabetic characters with spaces. Split the
resulting string by whitespace into tokens. Stem each token and check to
see if it is on the stopwords list. If it is, remove it from the entity. Rejoin
the tokens by a single space.

Noon 7

6 http://www.comp.lancs.ac.uk/computing/research/stemming

http://www.comp.lancs.ac.uk/computing/research/stemming/
http://www.comp.lancs.ac.uk/computing/research/stemming/

Part II: Analytical Methods
Given the construction in Part I, we can now begin to ask new kinds of questions
about our data. In this section, we will outline a few of these questions and
provide sample techniques that attempt to answer them for the PubMed abstract
corpus.

An Overview of the PubMed Entity Graph

• Number of nodes: 40,180

• Number of edges: 33,464,657

• Average node degree: 1665.74

• Average edge weight: 76.0

• Clustering coefficient: 0.82987

0

25

50

75

100

0 10000 20000 30000 40000

PubMed Degree Distribution

Fr
eq

ue
nc

y

Node Degree

Noon 8

7 This clustering coefficient was computed on a filtered version of the full graph. The filtering
removed all edges of weight less than 100.

The raw Entity Graph is extremely dense, with both the degree distribution and
the weight distribution showing a clear power-law distribution.

What are the most important entities in the corpus?

Network analysis provides us several tools for determining the “most important”
nodes in a given topology.

• k-Cores: A k-core of a graph G is defined as “a maximal connected
subgraph of G in which all vertices have degree at least k.”8 In the PubMed
Entity Graph, the maximal value of k is 424, the graph of which has 736
nodes.

����

�����

����	
�

����
�
�

�������
�
�

�����
�
�

���������

	�
�������

���

���

����������

�������

����
�
� ���
�
�

The 424-core of the PubMed Entity Graph with the weakest 99.99% of edges removed along
with any singleton nodes.

Noon 9

8 http://en.wikipedia.org/wiki/Degeneracy_(graph_theory)#k-Cores

http://en.wikipedia.org/wiki/Degeneracy_(graph_theory)#k-Cores
http://en.wikipedia.org/wiki/Degeneracy_(graph_theory)#k-Cores

• PageRank: PageRank is a link-analysis algorithm that formed the original
basis for Google’s search engine. It uses linear algebra to weight the relative
importance of nodes in a graph based on the way they link to each
other.

Entity Stem PageRank

metabol 0.11218

genet 0.06375

physiolog 0.03534

pharmacolog 0.03362

chem 0.03022

effect 0.02503

immunolog 0.02062

anim 0.01826

mal 0.01600

fem 0.01582

• Betweenness Centrality: Betweenness Centrality is the fraction of all of
the shortest paths between all pairs of nodes that pass through a given
node. For the subgraph of PubMed composed of nodes involving common
cellular components, we see the following BC scores:

Entity Stem Centrality

mitochondr 0.046

ribosom 0.043

The top 10 nodes in the PageRank computed on the top 1% of the PubMed graph.

Noon 10

Entity Stem Centrality

cytoplasm nuclear 0.025

nucle 0.023

suprachiasm nucle 0.018

paraventricul hypothalam nucle 0.014

rna ribosom 0.013

ribosom kda 0.010

lysosom 0.006

ribosom inact 0.005

Given a set of entities, which papers have the most information about
them?

We can solve this problem with the following algorithm:

1. Let the set E be the set of entities we are interested in.

2. For all unique pairs of entities in E, find the shortest path between the
nodes in the pair. Take the union of all the nodes in each path as Ecover.
This is the minimal set of nodes required to have a single connected
component containing all of the entities in E.

3. Take the subgraph G’ of entity graph G that contains only nodes (and
edges to nodes) in Ecover.

The top 10 nodes of the entity subgraph composed of cell-components ranked by their
betweenness-centrality. This shows that ribosomes and mitochondria are the most important

components in PubMed.

Noon 11

4. Construct a mapping M from PMID to score. For each paper in each edge
of G’, add a score value S to that paper’s score in the mapping. The
papers with the highest scores are most connective of G’, and thus have
the most information about the entity set E.

The score value S can (simply) be 1, making the score mapping a histogram.
Alternatively, the score value can be multiplied by any beneficial attributes of the
edge this paper was found in. For example, we can reward a paper that links
entities in E (our original query set) while penalizing a paper linking nodes in
Ecover – E (the entities we added to connect our query set)9. In addition, we can
penalize or reward papers that link extremely popular (high degree) entities if we
seek, respectively, to stray from or adhere to the “beaten path” in our search.

For the PubMed corpus, the test query was a list of 32 genetic diseases known to
be linked to the X chromosome. The top 20 results with score are:

Enhanced beta2-adrenergic receptor (beta2AR) signaling by adeno-associated viral
(AAV)-mediated gene transfer.

155.0

Skin denervation and cutaneous vasculitis in eosinophilia-associated neuropathy. 126.0

FastEpistasis: a high performance computing solution for quantitative trait epistasis. 126.0

Effect of inoculum size on detection of Candida growth by the BACTEC 9240
automated blood culture system using aerobic and anaerobic media.

126.0

Enlazin, a natural fusion of two classes of canonical cytoskeletal proteins, contributes to
cytokinesis dynamics.

126.0

Root nodule Bradyrhizobium spp. harbor tfdAalpha and cadA, homologous with genes
encoding 2,4-dichlorophenoxyacetic acid-degrading proteins.

126.0

HomozygosityMapper--an interactive approach to homozygosity mapping. 115.0

Diagnosis of X-linked lymphoproliferative disease by analysis of SLAM-associated
protein expression.

110.0

Charcot-Marie-Tooth disease type 1B: marked phenotypic variation of the Ser78Leu
mutation in five Italian families.

108.0

Noon 12

9 For our explorations of the PubMed data, we used a 10x score multiplier for each side of the
edge being in the original query set. No degree-weighting techniques were employed.

Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated
recombination events during evolution.

108.0

Lost in translation: translational interference from a recurrent mutation in exon 1 of
MECP2.

108.0

Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and
impaired spermatogenesis.

108.0

Temporal and regional differences in the olfactory proteome as a consequence of MeCP2
deficiency.

108.0

Clinical, electrophysiological and molecular genetic characteristics of 93 patients with X-
linked Charcot-Marie-Tooth disease.

108.0

Influence of recipient and donor IL-1alpha, IL-4, and TNFalpha genotypes on the
incidence of acute renal allograft rejection.

108.0

Elasticity and adhesion force mapping reveals real-time clustering of growth factor
receptors and associated changes in local cellular rheological properties.

108.0

hMSH2 is the most commonly mutated MMR gene in a cohort of Greek HNPCC
patients.

108.0

Analysis of clinical and molecular characteristics of Wiskott-Aldrich syndrome in 24
patients from 23 unrelated Chinese families.

108.0

Accurate representation of the hepatitis C virus quasispecies in 5.2-kilobase amplicons. 108.0

Delay eyeblink classical conditioning is impaired in Fragile X syndrome. 96.0

Even a basic search (with very rudimentary entity resolution) and little-to-no
parameter tuning produces results that find the implicit common feature in the
input (X-linked diseases).

Given a concept, which concepts are most similar?

There are many ways to go about relating nodes to other nodes. The simplest
approach, which we will explore here, involves finding the node with the most
similar set of direct connections. The similarity metric used here is the Jaccard

The top twenty paper results from running the algorithm on a query of 32 X-linked diseases.
The results show that the Entity Graph construction is fully capable of identifying the

biologically relevant properties of a query.

Noon 13

similarity10 between our query node’s neighbor set and the neighbor set of every
other node.

The results from running such a query (for the entity “laminin”) on the PubMed
Entity Graph are below:

proteoglyc 0.5989
fibronectin 0.5794
cadherin 0.5356
cult med condit 0.5350
lymphokin 0.5043
platelet der 0.5005
tissu metalloproteinas 0.4988
extracellul matrix 0.4980
integrin 0.4918
cult med ser fre 0.4900
metalloendopeptidas 0.4869
catenin 0.4841
fluoresc techn indirect 0.4753
urokinas plasminog act 0.4728
keratinocyt 0.4704
cytoskeleton 0.4612
keratin 0.4598
cocult techn 0.4588
lin transform 0.4558
immunoenzym techn 0.4546

The results of a node similarity query for the entity “laminin”.
The results are very promising, with several of the top results being other

glycoproteins or related structures.

Noon 14

10 The Jaccard similarity of two sets is defined to be the the size of their intersection divided by
the size of their union.

Future Work

Algorithms for the following problems have been contemplated but not yet
verified on the PubMed Entity Graph. Brief descriptions are provided here:

Given two entities, what are the best entities and papers that connect
them?

This problem is somewhat isomorphic to the problem of finding the best papers
for an entity subgraph mentioned previously. Here, the subgraph in question is
the shortest path on the Entity Graph between two entities of interest. We then
perform a similar best-fit computation on the papers in the edges of this path
with similar heuristics as before.

Given a set of entities, what is the minimal set of papers that can give
me information about all of them?

We can also efficiently compute the minimum spanning tree of all or part of the
Entity Graph. In this case, it is useful to set the weight of all edges to their
reciprocal, so that the tree that can reach every node does so using the strongest
document-based connections between entities. We can then re-score the papers in
the spanning tree with a similar process as described before.

Given an entity, which entities are most likely to be present with it in
new research?

The answer to this question exploits triadic closures, an important concept from
social network analysis. Simply put, it has been observed11 that for three nodes
{A, B, C} if there is a strong link between A and B and a strong link between B
and C there there is usually a weaker (but significant) link between A and C.
Thus, an algorithm for detecting which parts of the Entity Graph are likely to
host new links would search for the strongest connection between 3 nodes where

Noon 15

11 Granovetter, M. (1973). "The Strength of Weak Ties", American Journal of Sociology, Vol. 78,
Issue 6, May 1360-80.

two of them are not yet connected. This model could be backtested by making
multiple Entity Graphs for increasing time-slices and checking predicted growth
versus real growth.

Network-Based Reporting

Finally, the topology yielded by the construction presented here could be merged
with other existing datasets. For example, financial reporting and planning could
be accomplished by superimposing onto the Entity Graph the cost of the research
grant for projects yielding the papers that compose its edges. Naturally, this
provides each node and edge an aggregate real-valued monetary cost. Using this
information we could easily compute which papers, projects, and concepts
provided the most value (in terms of idea-space influence per dollar). We could
also compare research organizations’ capabilities and generate time-based reports
detailing the effectiveness and impact of large-scale scientific initiatives.

Conclusion
In this paper, we have illustrated an efficient and versatile graph construction
termed the “Entity Graph”. We have provided outlines of the algorithms required
to implement it in practice while addressing the importance of scalability and
parallelism in the design of future metrics. A usability heuristic involving natural
language processing was also provided. Finally, we described in detail a small set
of analytical techniques that address important questions often asked (but seldom
answered) about complex scientific data. Where possible we have also provided
examples of these techniques being used in practice on one of the largest scientific
datasets publicly available. We have only begun to study the usefulness of these
types of analyses and we look forward to refining our techniques in the future.

Noon 16

