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ABSTRACT
Utilizing the Social Aviary, we analyze the network implied
by usage of the conference hashtag #online09 on Twitter.
We observe that, if taken as a network, the group of users
who tweet with the requisite hashtag over the course of a
conference does not get particularly more dense, though it
does densify relative to the immediate users connected to
the conference-goers who did not use the hashtag. This is
the start of a much large project, analyzing how these types
of events create a cover over a subset of communities and
then densify over that coverage.

1. INTRODUCTION
We are approaching a golden age in the analysis of net-
works. Online services like Facebook, LinkedIn, and Twitter
provide us with a varied and rich data on the structure and
dynamics of interactions, some of which have some meaning-
ful bearing on real-world networks. Researchers have found
ways of simulating and analyzing the network topologies of
various types of real-world networks, to massives scales. Un-
derstanding the dynamics of real social networks over time
is, however, still a challenge. Many studies compare two
snapshots of the same network, and from that devise met-
rics to understand the evolution of the network, as noted by
[7].

We take a different approach. Using the Twitter API we
built a toolset for analyzing the networks implied by the
tweets of conference participants. Because conferences, es-
pecially social media conferences, strongly suggest to their
participants that they tweet about the conference with a
hashtag, we can find who is at a conference, who they know,
and who they follow. We have the exact timing of edge and
vertex creation of interesting subnetworks that develop very
quickly.1 We discuss more of our assumptions and provide

1Our back-of-the-envelope estimate suggests that there are
as many as 15 conferences a month that strongly suggest to
participants to use a conference hashtag.

a brief description of how conference participants use hash-
tags in section 3. Because we think the toolset we built
could be a very useful network data collection and analysis
tool for communities on Twitter in general, we hope to re-
fine it more and release it as an open source project. We
discuss our implementation, called Social Aviary, in [10].

Recording and analyzing conferences through Twitter has
several advantages. First, while it is very difficult to track
the entire evolution of the Twitter graph, collecting data on
connections formed at a conference is relatively straightfor-
ward, by comparison. The Twitter API, described in 3.2, is
sophisticated enough to be utilized to collect data on con-
ferences. Second, if we restrict our set of viable conferences
to social media conferences (i.e. those that focus on under-
standing the impact of social network sites and services), we
can not only more accurately approximate the conference
network, but also capitalize on the relative abundance of
social media conferences that occur weekly.

2. RELATED WORK
Some work has been done on empirically analyzing networks
over time at such fine detail. The study most similar to
ours, Kossinets and Watts [5], analyzes a registry of emails
sent by 43,553 undergraduates and graduates at a major
university over the course of one school year. The main
analytical quantities of interest appear to be the empirical
probability of triadic closure (defined as a cycle of length 3)
and cyclic closure more generally (defined as the closing of
a cycle of length d by adding one edge). The authors find
that micro-instability in portions of the network “average
out” and create some larger, emergent macro-trends.

Our work relates to the study of community structure in
large networks by Leskovec et al. [8]. A few points are
worth mentioning. First, they estimate that communities of
less than around 100 vertices tend to exhibit much greater
exclusivity relative to the rest of the network. Past 100 ver-
tices, the community tends to connect more with other ver-
tices outside of it. In our case, we assume that vertices in the
conference hashtag network are already part of some com-
munity. The conference should theoretically never be the
sole community in which vertices belong. We can, neverthe-
less, examine the clustering behavior within these conference
hashtag networks.

3. WHY TWITTER MAKES AN ATTRAC-
TIVE RESEARCH PLATFORM



Figure 1: The network formed from the messages
and relationships among R programmers on Twit-
ter.

3.1 The Emergence of Niche Networks
Because of its unstructured, broadcast-centric nature [4],
people can use and abuse Twitter to many ends. One of the
major use cases has become the natural formation of niche
networks, small communities of users that share a similar
interest, be it for leisure or professionally. Twitter’s lean
nature makes the dissemination of information and discus-
sion through these niche networks valuable for users.

3.1 illustrates a niche network on Twitter. The data comes
directly from the Twitter API, pulled on search terms. This
network represents users of the programming language and
environment R on Twitter. This is a two-core representation
of the network. In red are the R users, and in blue are the
users who they all mutually follow. 2

3.2 A Powerful API
From a data collection perspective Twitter has a power-
ful Application Programming Interface (API). Twitter has
since its inception been keen on opening up its data streams
to researchers and companies. For business this has led to
an explosion of Twitter-based applications and clients. Re-
searchers have traditionally been successful in obtaining por-
tions of social networks from companies that run them for
analytical purposes.

Yet there are practical issues involved in asking for a static
data set. We might not necessarily get the date and time of
a new follow, for instance. This naturally makes it difficult
to record and analyze the growth of a new community within
the social graph.

Luckily these practical issues can be resolved by utilizing the
same API that companies have been using for years. While a
researcher cannot measure the dynamics of the entire social
network through the API, one can answer specific questions
about the growth of certain communities.

3.3 Hashtags: community indicators
The final relevant feature, and for our purposes the most im-
portant, relates using hashtags in a user’s tweets. Hashtags
are a way of loosely categorizing a tweet. The convention is
very simple; all a user needs to do is include #tag in their

2Image courtesy Drew Conway: http://www.drewconway.
com/zia/?p=1471

tweet. In fact, the network in figure Fig. 3.1 came from
using the Twitter API to search for instances of #rstats in
tweets.

Hashtags are important because, for people who care about
certain fields, communities, products, concepts, languages,
or events, hashtags become unique focal points for catego-
rizing the volume of content generated by users. They can
define communities, depending on the purpose of the hash-
tag. We have given one example of this, through the #rstats
hashtag.

Conference organizers have capitalized on users’ familiarity
with hashtags by suggesting to conference attendees they
use a specific hashtag so that others, both at the conference
and those who cannot attend, can view the back channel
of information. This has become a powerful use case for
hashtags. It makes connecting with others at a conference,
as well as keeping up with the most interesting events, much
easier. It also helps define a community of people who have
shared an experience at a conference.

4. TIME SERIES COMMUNITY ANALYT-
ICS

Because in our case the issue of identifying a potential com-
munity has been side-stepped with additional metadata, and
because we know the timing of edge creation and node ad-
mittance to communities, There are several interesting ques-
tions we can answer for a given community.

4.1 Common Notation
We will first define some common notation. We define a
graph G, along with its set of vertices, V , and set of edges,
E. The number of vertices and edges are |V | and |E|, re-
spectively. vi ∈ V denotes vertex i, and eij ∈ E represents
an edge that connects vertex i to vertex j. We also define
the adjacency matrix as W , where wij ∈ W denotes the
strength and presence of an edge between two vertices, as-
suming wij > 0. Finally, we denote D as a diagonal matrix
of degrees, where di ∈ D is the degree of vertex i.

4.2 How do the number of vertices, and the
average degree, change over time?

A first set of questions involves typical metrics one might
calculate for a static graph. We want to understand how
many vertices enter the network, and their timing relative
to the real-world events underlying the conferences.

We also look at the average degree over the course of the
conference. We hypothesize that the average will greatly
increase over the span of the conference. This seems rather
intuitive and obvious, so we also will look at how the median
degree changes over time.

4.3 How does the density of the network change?
The graph density is defined as

d =
2|E|

|V |(|V | − 1)

Where |E| is the number of edges in the graph and |V | is the
number of vertices. The density sits between 0 and 1. We
would expect the network to become more dense over time.



4.4 How “cliquish” is the graph?
To measure the cliquishness of the graph, we measure the
average clustering coefficient, first proposed by Watts and
Strogatz [12]. The authors use the term“cliquish” in describ-
ing what a high clustering coefficient could be interpreted.
We define it as

ci =
|eik|

|Ni|(|Ni| − 1)

Where Ni = {k : k is a neighbor of i}, and k is the index of
a vertex vk.

We are interested in finding the average clustering coeffi-
cient,

CG =
1

|V |

nX
i=1

ci

4.5 Do more edges form within the network
or between it and vertices outside of it?

Ideally, as new nodes enter the system and new edges are
created within the niche network as well as out of it, the ratio
of inter- and intra-cluster density over time should change.
Does it grow bigger or smaller?

For each rendered graph we calculate the Krackhardt’s E/I
Ratio, defined as

K =
|U | − |E|
|U |+ |E|

here |U | is the number edges in the network pointing to
external vertices and |E| is the number of edges that point
to other edges within the network [6]. K takes on values
between −1 and 1, though the interpretation is clear: if |U |
is bigger than |E|, we know that outward-connecting edges
account for K% more of the total inner and outer connecting
edges. A similar interpretation exists for when |E| is bigger
than |U |. For the sake of clear exposition and uniformity of
common notation we replace the E and I with |U | and |E|,
respectively.

This measure shares some similarities to the inter- and intra-
cluster densities outlined in [2]. Both can give us a decent
sense of how isolated a community is, since they and many
other functions of inner and outer edges all measure the
same thing. We choose the E/I ratio because of it is easy
to interpret and because it allows us to focus on the local
connections vertices in our network have with vertices out-
side of it, rather than how locally the conference network is
compared relative to the entire Twitter graph.

4.6 How robust is the network over time?
There are a few ways to measure the robustness of a network.
Here, we choose to calculate the algebraic connectivity over
time. The algebraic connectivity is defined as the second
eigenvalue of the normalized graph Laplacian, first proposed
by Fiedler for regular graph Laplacians [1].

Recently spectral methods, which depend on the eigende-
composition of the graph Laplacian, have become very pop-
ular, most notably with community detection in graphs and
clustering methods [11].

4.6.1 Algebraic Connectivity and The Multiplicity of
Zero Eigenvalues

Suppose that λi, i = 1, ..., n are the eigenvalues of a normal-
ized graph Laplacian L = I − D−1/2WD−1/2, where W is
the weighted adjacency matrix of our graph G, and D is a
diagonal matrix of degrees. We assume the eigenvalues have
been sorted by size, where λ1 ≤ λ2 ≤ ... ≤ λn. The sorted
eigenvalues of this matrix tell you a few useful things:

The number of zeroes tells you the number of discon-
nected parts of the graph there are. If, for instance,
λ1 = λ2 = λ3 = 0, then we would expect there to be
two connected components in the graph.

The size of the first nonzero eigenvalue gives you the
algebraic connectivity of the graph. When a graph is
connected then this is usually the second eigenvalue.
In real-world applications, however, there are often iso-
lated nodes and splits in the community. Because our
questions concerning the number of isolated nodes gets
answered elsewhere, we throw them out before calcu-
lating the eigenvalues of the Laplacian.

Its relation to the diameter of the graph There are many
bounds, both upper and lower, relating to the algebraic
connectivity and the diameter of a graph. A lower
bound from [9], for example, is:

diam(G) ≥ 4

nλ2

Similar quantities exist for upper bounds.

Robustness The algebraic connectivity has been shown in
simulations to be a decent measure of a network’s ro-
bustness against random edge deletion [3]. The higher
the algebraic connectivity, the more robust the net-
work is to random deletion.

4.6.2 The Eigengap Heuristic and Clusters
We will also use the eigengap heuristic to identify the total
number of possible clusters in the data. There is to date
no theoretical justification for using it, but practically the
results tend to work well [11]. The idea is to look at the
ordered eigenvalues, λ1, λ2, ..., λn, and pick a small value for
k such that

k∗ = max
k
|λk − λk+1| = ∆k+1 subject to sanity constraints

This heuristic method, though having no theoretical justifi-
cation, can work well in identifying the number of subcom-
munities in a network. This gives us a sense of how many
clusters might exist over time. We will also use the actual
value of the eigengap heuristic as a proxy as a rough con-
fidence metric for there being more than one cluster.3 The
smaller the value, the harder it is to discern the number of
clusters, likely because the similarity matrix suggests that
the vertices are highly similar. This is something implied by
von Luxberg, though not implicitly stated [11].

3A future paper by the authors on this topic still currently
in an early stage.
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Figure 2: The sorted Laplacian eigenvalues as they
grow over time for a conference network
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Figure 3: Differences between the sorted eigenvalues
of the same Laplacian over time. Notice the large
corridor between the peaks.

In practice, we must find a decent decision rule for finding
the appropriate eigengap. “Subject to sanity constraints,”
(paraphrasing the discussion of this method in [11]) works
fine if we are in the position of eyeballing the appropriate
value of k. Automatic picking does require some algorithm,
especially when we are interested in plotting many eigen-
gaps over time. We propose a simple method for finding
the eigengap heuristic.4 First, for each period of our ren-
dered network, we plot the sorted Laplacian eigenvalues for
a conference network over its course, as shown in Fig 4.6.2.
We notice that, for this real-world network, the slopes of
the sorted eigenvalue curves are steepest at the front and
at the end. If we look at the differences between successive
eigenvalues, |λi−λi−1|, i = 2, 3, ..., n, the relationship we can
utilize, depicted in Fig. 4.6.2 becomes clearer. We then take
the largest earliest difference ∆k+1 (easily done by splitting
the differences down the middle of the corridor depicted in
Fig. 4.6.2), and pick the associated value k as the number
of subcommunities.

This suggests a simple algorithm for finding the appropriate
value of k. For each time period calculate the differences in
the sorted eigenvalues, cut the vector in half, and find the
largest difference from the half associated with the lower
eigenvalues, along with its corresponding k. The eigengap
heuristic and the algebraic connectivity can give us some
sense of the narrative of the graph over time. As the al-

4In the interest of space we defer discussion of the simula-
tions we ran to determine how robust this method is.

gebraic connectivity grows or shrinks we would expect the
eigengap to move in the opposite direction.

5. A CASE STUDY - ANALYZING CONFER-
ENCES THROUGH Social Aviary

5.1 #Online09 - The IMS Conference
The Online Information 2009 Conference Was held from the
1st to 3rd of December, 2009, in London.5 Writers, en-
trepreneurs, and personalities presented in talks, ran work-
shops, and organized mixers for the conference attendees.
The focus of the event was on social media - how to use plat-
forms such as Twitter as marketing and information gath-
ering tools.

We ended up with around 500 vertices in the graph from the
conference by our stopping point. Crawling from November
28th to December 5th we picked up on a substantial amount
of chatter regarding the conference the day before it took
place and quite a bit on the tail end.

5.1.1 Exploratory Analysis
Being the start of a much larger project we aim to under-
stand how these networks evolve over time. Many of our
analyses turn to time series of metrics we might care about
in the static case. For this particular work we focus only on
these, leaving many interesting dynamic analyses for later
study.

5.1.2 Vertex Growth Over Time
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We see that many of the vertex additions to the network
occur the evening before the conference even begins. This
makes some sense; perusing the stream of tweets related to
the conference, participants are tweeting about how they are
going to the conference the next day, and so want to have
their say on the public stream as early as possible.

Based on firsthand experience we would expect most ver-
tices would join the network during larger, plenary-type
talks such as keynotes. This is indeed what we see here.
Node growth also closely mirrors node growth.

We omit discussion of edge growth because it essentially
mirrors the exact same trend as vertex growth.

5http://www.online-information.co.uk/online09/ims.
html



5.1.3 Graph Density Over Time
We notice that the graph density over the length of the con-
ference actually falls. We can interpret it thus: more vertices
enter the system than edges get created.
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5.1.4 Average Degree Over Time
The average degree over time of the network rises fairly con-
siderably over the course of the conference, from around 14
at the outset of the first keynote to nearly 20 by the last.
This would suggest that the conference network becomes
more dense over time.
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Some pause is in order. Just as likely is the inclusion of
highly connected vertices into the network, or a particular
vertex forming many more edges than others over the course
of the conference. Speakers, for instance, tend to get many
new Twitter followers during and right after they give a
presentation. Such effects might mask the actual change in
the degree distribution. Hence we also include the median
degree over time, shown here.
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5.1.5 Connectedness to Outside World Over Time
Next we examine Krackhardt’s E/I ratio over the course of
the conference. Remember that the E/I ratio gives the dif-
ference between the percentage of edges that point outward

and those pointing inward. The main trend was predictable:
The E/I ratio falling by .05 demonstrates that this network
forms some sense of a community within this network.

Unfortunately, we have not found a baseline to which we
can compare. Should we expect the value to go down more
quickly as new nodes are added? Without further work all
we can discern from this plot is that the ratio falls, and not
if this is more or less than we should expect. Achieving a
larger sample of conferences will help us establish a baseline.
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5.1.6 Average Clustering Coefficient Over Time
Here we discuss the average clustering coefficient. Remem-
ber that the average clustering coefficient measures the amount
of “cliquishness” among the vertices. Aside from some un-
stable behavior the day before the conference, the average
clustering coefficient over the course of the conference re-
mains relatively stable. This suggests that the network does
not become any more clique-prone, which we may also infer
from the discussion of algebraic connectivity and clustering
below.
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5.1.7 Algebraic Connectivity Over Time
The algebraic connectivity, discussed in section 4.6.1, is the
second eigenvalue of the Laplacian graph. It gives us an
additional sense of how connected the graph is over time.
Striking in this plot is that there is a step-effect that occurs
on the first and third keynotes. Examining the values before
these massive jumps show that the algebraic connectivity
does indeed rise, but by several orders of magnitude smaller
than the big steps. The accuracy of this particular metric
in our implementation is dubious; given the difficult nature
of estimating the algebraic connectivity of a network that
contains many isolated vertices and components the metric
might not be meaningful.
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5.1.8 Possible Clusters Over Time and the Eigengap
Heuristic

Here we use von Luxburg’s eigengap heuristic [11], along
with our decision rule outlined in section 4.6.2 to estimate
the total number of possible clusters. We plot both the
estimated number of clusters and the eigengap heuristic to
give a sense of how the two are related.

It is worth noting that the eigengap heuristic goes down con-
siderably over the course of the conference, and the timing
of the changes, as with the algebraic connectivity, coincide
with keynote addresses. As with the E/I ratio, it is diffi-
cult to discern how connected the network actually becomes
without adequate baselines.
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6. CONCLUSIONS, RESERVATIONS, AND
EXTENSIONS

With the explosion of public APIs researchers can analyze
in real-time network growth and interactions. We presented
a new software toolkit that dynamically pulls such networks
off of Twitter and provides simple, rich classes for dealing
with these dynamic networks. From a data-collection per-
spective, Social Aviarygives researchers the tools to pull new
data from events as they happen. From a library perspec-
tive, Social Aviaryalso gives developers tools in the familiar

NetworkX paradigm to test their own models. Finally, de-
velopers and researchers also get a set of rich exploratory
data analysis tools to accompany the others.

As a first step in a much larger project, we analyze one
conference. The sheer number of questions to answer with
a data set of interactions, along with the timing of vertex
and edge creation, is dizzying. Yet we understand that we
need both real baselines and more conferences with which
to compare, so we can gain some intuition about what we
ought to expect from these sorts of dynamics.

Regarding baselines for exploratory data analysis, we are
currently researching three. The first is obvious: as we col-
lect more conferences we will observe common trends, and
can begin to compare trends to each other. Second, we hope
to establish a number of theoretical bounds to some of the
metrics of interest. What precisely is appropriate from a
theoretical perspective is not obvious, given that the confer-
ence represents an oddity in normal social network theory.
Third, we hope to simulate based off of some existing mod-
els, once we understand how to extend them to this type of
dynamic.
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