
Tiresias: A comprehensive framework for describing,
analyzing, and visualizing connectivity data over time

Ryan Noon
Department of Computer Science

Stanford University
rmnoon@cs.stanford.edu

Hamilton Ulmer
Department of Statistics

Stanford University
hamilton.ulmer@gmail.com

ABSTRACT
We describe a new hybrid data structure for dynamic graphs
and identify a particular approach to visualizing it. The
sample data in this case comes from a related project in-
volving the logging and analysis of Twitter data originating
from real-world conference communication on that network
as discoverable via pre-shared #hashtags. Our data struc-
ture (referred to as a TimeGraph) is an abstraction that ac-
cepts updates regarding the state of the system and can
efficiently render the system at any given time. The visual-
ization shows using color, size, and animation the differences
between any two particular temporal states of the graph.
Visual insights within this particular dataset are examined,
and future optimizations of the data structure and improve-
ments to the visualization are discussed.

1. INTRODUCTION
Graphs are an incredibly versatile tool for modeling com-
plicated physical and virtual systems. From family trees
to automobile traffic routing, graphs consisting of a set of
nodes and edges have proven themselves vital to humanity
since long before the dawn of the Information Age. Graph
theory is an important component in any mathematics or
computer science education and much research has gone into
developing useful algorithmic approaches to understanding
this data structure. Additionally there exist superb toolkits
and libraries that efficiently utilize much of this research. In
the world today graphs are as ubiquitous as they are useful.

Graphs are highly applicable to many emerging data prob-
lems, but there is a significant gap in the standard toolchain
used by analysts and researchers to capture and sift through
data bound for a graph. There are highly functional and ef-
ficient toolkits for analyzing graphs, but almost uniformly
they rely on graphs to be already formed, static entities.
This makes the process of analysis cumbersome and limited
to those individuals with the skills to process and reformat
data into new structures. It also limits how fast the system
can react to new data. What is sorely lacking in graph-style

analysis is a simple conceptual model that encapsulates up-
dates to the system in a modular and intuitive way. Tiresias
is designed to simplify this process by distilling the process
of data collection in a flexible way that is easy to tie into
rapid concurrent data sources. Indeed, with constant in-
creases in global connectedness and sweeping upgrades in
existing communications networks, more and more data is
becoming available in real-time. Making analytical sense of
highly concurrent human endeavors should be a priority for
quantitative individuals and organizations.

In terms of visualizations, much effort has been spent in
pursuing novel algorithms for drawing graphs in a way that
allows the human mind to extract meaningful conclusions
about the data from their visual structure. Extensive work
has gone into a variety of strategies, such as leveraging math-
ematical properties of the adjacency matrix [5] and in the
application of physical principles to model virtual entities in
stable energy configurations [1]. These techniques are well
established and with some parameter cajoling can produce
acceptable graph layouts in polynomial or better time. This
field is impressive and has produced great gains, but it is not
the focus of our visualization component. Instead we seek to
identify the strengths and weaknesses common to all graph
models when presented with the dimension of time. In this
paper we will present some fundamental techniques (already
implemented in the Tiresias viewer) and discuss future im-
provements in both data presentation and user interactivity
that may enable increased insight into datasets leveraging
the TimeGraph structure.

2. RELATED WORK
Dynamic graphs have a significant presence in the field of
computer networking in the form of so-called “streaming
graphs” where edge weights change to reflect volatile net-
work state. Prominent uses of this model include both clas-
sic distance-vector routing algorithms and new work regard-
ing efficient streaming graph metric estimation [2]. There is
extensive interest in online graph metric update algorithms
due to the difficulties inherent in storing and processing some
especially high-throughput data sources. In these cases what
is of prime importance is the possession of an accurate up-
to-date picture of the system. Less important for these re-
searches is the ability to accurately remember the state of
the graph at any time. This feature would be very useful in
an analysis context but would likely impact performance in
the high-throughput applications envisioned for these algo-
rithms.

Leskovec et al. also take a more predictive approach in their
research on time-based graphs [3]. Seeking to model and
understand the growth of real-world networks, they astutely
observe that “the bulk of prior work on the study of network
datasets has focused on static graphs, identifying patterns in
a single snapshot, or a small number of network snapshots.”
Without ever dipping too heavily into implementation, they
go on to describe their collection and observation of specific
power-law densification properties and various attachment
models that approximate these power-law degree distribu-
tion. One gets the sense in reading this work that a stan-
dardized TimeGraph data structure may have been of use in
their analysis, but many of their datasets are “pre-cooked”
snapshots taken at discrete intervals. Their models would
only be improved by more data points, which, if sourced
from a TimeGraph walked forward event by event would com-
prise the optimal approximation of continuous graph evolu-
tion.

In terms of visualization, highly meaningful related work
was conducted by Veldhuizen in his Ubigraph system [6].
Ubigraph represents a system where a physics-based world
is used to visualize a finite graph in three dimensions. It
is visually compelling to watch the system’s force-directed
model evolve in adapting to changes in graph structure.
Veldhuizen himself is aware of the implications of such dy-
namic visualizations when he describes his efforts to under-
stand the growth of complex algorithms, ad hoc wireless
networks, databases, distributed systems, and even visual
performance profiling. His primary method of conveying
information to the user is motion, as all of his nodes are dis-
cretely fascinating physical entities. This focus on motion,
combined with the force-directed approach, works well on
graphs with inherent symmetry or limited complexity, but
there are cases where a built-in dependence on a specific
layout system could limit the flexibility of the user in lever-
aging the best method for his or her data. Additionally, the
current implementation does not provide a tight coupling
to a time based data structure and consequently variable
time control seems to be absent from the interface. Still,
the speed and effectiveness of its continuous force-directed
layout and the physical intuition about graphs it enables
should be important considerations for any such system.

3. DESCRIPTION OF SYSTEM
3.1 Model Side
3.1.1 Update

The basic building block of a TimeGraph is the Update class.
An Update represents any change that can happen to a spe-
cific node in the dataset being encapsulated by a TimeGraph.
It has the following interface (here simplified and expressed
in pseudocode):

class Update:

constructor(node_id, u_type, content, timestamp)

rehydrate(serialized)

serialized()

Standard types of Update objects are constructed for events
that influence graph structure. In this case the update type

(u_type) could be +present denoting that at the time spec-
ified in the timestamp field the node became present in the
graph, and before that it was not. Another example is the
+edge update, which indicates that the content field con-
tains a list of edges that were added to the graph at the
specified time.

In our implementation, Update objects are capable of a very
useful “self-serializing” behavior whereby they can convert
themselves into byte-encoded strings that can then be easily
passed via the network or the filesystem. Constructing an
empty Update and then calling rehydrate() with this string
quickly rebuilds the update. This makes the creation and
propagation of Update objects an extremely flexible process
and as we shall see this self-serializing programming pattern
is used to great lengths in many Tiresias objects.

3.1.2 TimeNode
The TimeNode is a class that represents one node entity in
the graph as it travels through the data timeline. It has
essentially the following interface:

class TimeNode:

constructor(id)

archived()

reinflate(archived)

is_present()

out_edges()

in_edges()

get_cur_time()

get_range()

render(time)

add_update(update)

The first group of methods applies to the construction and
storage of TimeNode objects. Every TimeNode must have
a unique id that is used as a global key for it through-
out the system. Self-serializing is also used here to allow
the TimeNode to simplify itself into a hashmap for saving to
the filesystem or appending as metadata to the NetworkX
graphs generated by the TimeGraph class.

The next group contains the traditional adjacency interface
for graph connectivity. Calling these methods yields the
out-edges and in-edges of this node at its current rendered
time. Note that because the TimeNode abstracts a node over
its entire lifetime with the larger graph the node need not
be present in the graph at a specific time. The TimeNode

knows this because of the +/- present updates it receives
and intuitively yields no out-edges or in-edges when the node
is not present.

The final group contains the mechanism for updating the
state of the node entity. The TimeGraph in Tiresias is node-
centric, meaning that all updates to graph structure are
stored directly in the nodes they affect. The TimeNode stores
a vector of all the updates related to it ordered via their
timestamps. Since these updates are atomic, rendering a
node to its state at given time can be quickly accomplished

by rewinding and fast-forwarding the record and pushing/popping
the corresponding Update objects.

3.1.3 TimeGraph
The heart of Tiresias on the model side is the TimeGraph

data structure. Simply put, the TimeGraph is an abstrac-
tion encapsulating the entire timeline of the graph system it
models. It has the following interface:

class TimeDiGraph:

render(time)

get_graph()

get_cur_time()

get_range()

set_filename(filename)

save()

load()

set_extra(obj)

draw(filename)

add_update(id, update)

cache_node(node)

The first group of methods contains the primary time ma-
nipulation functionality. The user of the TimeGraph can call
render() on any possible time value (in our implementa-
tion any valid Python datetime object). This method sets
the state of the TimeGraph to be the configuration of the
graph present at that time. In our implementation the user
can then retrieve a NetworkX (the standard Python graph
analysis library) object by calling get_graph(). Invoking
get_range() returns a tuple of the start and end times of
the records that compose the TimeGraph.

The second group of methods contains useful functionality
for interacting with the system and the client. TimeGraph

objects can easily be saved or loaded from a given filename
via the previously outlined “self-serializing” idiom. Addi-
tionally they contain a user-supplied heterogeneous hashmap
of metadata in the form of its extra object. This provides a
location for particular applications to store additional caches
or objects (like associated media content for the graph) in
a safe place that will be automatically preserved with the
graph itself when saved. There is also a convenient draw()

method that will use the currently configured graph layout
system (GraphViz dot by default) to output a static render-
ing of the graph at the current active time.

The last group of methods facilitates the addition of new
information to the graph. The TimeGraph must store a
TimeNode for every node that is ever present in the graph,
and (as previously mentioned) the TimeNode objects them-
selves are the sole storehouse of update information. This
means that the most sensible internal data structure for
the TimeGraph is a cache of TimeNodes implemented as a
hashmap. When a TimeGraph receives an Update, it fetches
the relevant TimeNode in constant time from a hash on its
ID and passes the node the update, which is then appended
to its update vector. Rendering the graph at a specific time
is thus a relatively simple process: just render each node in

the cache and traverse them until every node that consid-
ers itself “present” is included in the graph and all of the
edges between two “present” nodes have been placed. A few
optimizations to this process have been considered, but the
runtime for the naive algorithm is already O(n + m) and
greater constant factor performance has not currently been
deemed necessary.

Tiresias also contains other data structures and additional
operations and functions whose primary focus is the intu-
itive construction of updates to the graph. For example,
TimeNode objects support subtraction, so it is possible to
subtract an earlier TimeNode from a later one to find the
difference between them. This difference object can then
easily be converted into a series of atomic serialized update
strings and sent to any other Tiresias objects.

3.2 Visualization Side
Tiresias currently implements a viewer program for visu-
alizing the TimeGraph data structure. The program uses
OpenGL to create an interactive hardware-accelerated dis-
play of a given TimeGraph or relevant subclass.

3.2.1 Display and Interaction
By default viewer uses an orthographic top-down projection
to convert the three-dimensional space of OpenGL to the
two-dimensional space where graphs are commonly drawn.
When opened on a particular saved TimeGraph the viewer
displays a visual rendering of the earliest state of the graph.
The user can drag the graph to pan and use the mouse wheel
to perform a familiar adaptive zoom. In addition, the user
can use the right mouse button to draw a bounding rectangle
on the screen that rescales the window when the button is
released.

3.2.2 Time Differentials with Keyframes
The viewer supports interactivity through time via the use of
keyframes. Tiresias automatically splits up the range of any
TimeGraph into (by default) 60 evenly spaced regions and
designates each divider as a discrete keyframe point within
the otherwise continuous time dimension. The TimeGraph

is rendered and placed at that time and the resulting lay-
out information is saved in the TimeGraph’s metadata dic-
tionary. When the user opens the viewer and the initial
state is rendered, a slider bar appears on the bottom of the
screen. Dragging the knob shows the user the timestamp of
the keyframe assigned to that region of time. Releasing the
knob initiates a visual transition between the current time
and the selected time.

3.2.3 Visualizing the Difference Between Keyframes
In relation to these two keyframes, any given node or edge
can be described as “departing” if it belongs in the old but
not the new, “arriving” it belongs in the new but not the old,
and “staying” if it belongs in both. Transitioning between
keyframes lasts for a specific time period and currently in-
volves visual queues derived from these classifications con-
veyed on three channels: motion, size, and color. In the cur-
rent implementation edges are not animated or drawn during
transitions to keep the screen uncluttered and to maintain
a high framerate. Information about edges is thus (with the

exception of “departing edges”) currently only provided by
color and size channels before and after the transition.

With regards to motion, nodes in the“arriving”set appear at
the origin and are tweened to fly to their eventual destination
by the end of the transition period. Since all of them start
at the same location and quickly diverge, the user quickly
learns where to look for new nodes and can quickly gauge the
number to be added by the scattering effect of the “flock”.
Nodes in the “departing” set are similarly animated moving
towards the origin, and watching the two sets (which are
easy to distinguish by their color) pass by each other on their
paths into and out of of the graph gives a good sense of the
scale and distribution of the nodes that are changing. Nodes
in the “staying” set are simply shifted to their positions in
the new layout.

Tiresias also exploits the property of the default GraphViz
layout engine to maintain uniform node density to leverage
the user’s perception of size in comparing two graph times.
With near-uniform node density an important part of the
layout heuristic (quite sensibly to avoid knots and gridlock),
more nodes entering the graph means a larger graph. In
the Tiresias viewer this translates to overall graph expan-
sion and contraction patterns that correlate with the num-
ber of nodes in the current keyframe. Since the user’s po-
sition in space does not change during transitions, a larger,
more complicated graph leads to a larger virtual world in
the viewer. This property exploits our innate human sense
of scale and literally immerses the user in the “big picture”.

Finally, color plays a large role in the viewer’s transmission
of information. Green in applied to the “arriving” set, red
is applied the the “departing” set and blue and gray are ap-
plied to the “staying” set. More specifically, when new nodes
are joining the graph they appear drawn in green and they
(along with the new edges) stay green until time shifts to
another keyframe. During the transition, nodes that are
leaving the graph turn red as they move off the graph. In
addition, when the edges disappear during animation, edges
that are being removed from the graph persist for the du-
ration of the animation and turn red. This scheme effec-
tively highlights the important changes taking place to the
user using familiar colors: green is the color of new plant
growth and red pens are commonly used to make subtrac-
tive revisions to documents. The only limitation of this color
scheme could be its confusion to individuals with red-green
colorblindness–the most common form.

By utilizing motion, size, and color, our initial implementa-
tion is able to clearly show changes in a highly complicated
system that enables the user to draw interesting conclusions
about a previously unexplored dimension in his or her data.

4. DISCUSSION OF DESIGN

4.1 Data structure performance
In several weeks of testing, the data structures in Tiresias
have been performing very well. Much of this is due to the
design which allows most common operations to run in linear
or better time. For example, the following is the procedure
for subtracting two TimeNode objects:

Figure 1: The evolution of the nextMEDIA ’09 con-
ference as viewed on Twitter. Membership in the
graph indicates the user has used the #nextmedia

hashtag in a post. The edges are “following” re-
lationships. At top you can see an initial interest
group that has talked about the conference a few
days before it started. Moving down we can see a
large bump as all of the attendees announce their
arrival in Toronto. In the later screenshots we can
see sporadic green edges, indicating that new rela-
tionships between individuals are being formed at
the conference.

define subtract_nodes(a,b):

a_in_edges = set(a.in_edges)

b_in_edges = set(b.in_edges)

a_out_edges = set(a.out_edges)

b_out_edges = set(b.out_edges)

a_presence_change = None

if a.present and not b.present:

a_presence_change = ’+present’

else if not a.present and b.present:

a_presence_change = ’-present’

a_in_edges_gained = a_in_edges - b_in_edges

a_in_edges_lost = b_in_edges - a_in_edges

a_out_edges_gained = a_out_edges - b_out_edges

a_out_edges_lost = b_out_edges - a_out_edges

While not terribly complicated, this example shows that
with good internal data structures (like no-nonsense Python
hashsets), TimeGraphs should easily scale to many thousands
of nodes.

4.2 Automatic consistency checks
In deployment situations there is a rather large side benefit
to piping all relevant incoming data into one or more Tire-
sias instance: automatic consistency/sanity checking. As
opposed to a standard plaintext or relational log, with“auto-
render” mode activated Tiresias actively generates and re-
assembles a model of the outside world (in the form of a
TimeGraph) in real-time. Because of this, Tiresias can spot
irregularities or inconsistencies (malicious or otherwise) in
the incoming data. For example, if Tiresias is modeling
a large corporate network and starts receiving https traf-
fic updates for a TimeNode representing a previously liqui-
dated machine, Tiresias’ automatic inconsistency reporter
will alert the user and prevent a potential data burglary at-
tempt. Tiresias makes it easy to model large systems as
a graph, and in doing so imbues a chaotic concurrent data
ecosystem with a fundamental intelligence. This yields to
the user a system aware of its own behavior via logical com-
pliance with the model.

4.3 OpenGL
In our previous visualization projects[4], we have learned the
importance of using the right tools when dealing with poten-
tially massive datasets. Even a cursory examination of hard-
ware performance trends from the past decade should yield
astonishment at the progress of discrete Graphics Processing
Units (GPUs). With performance numbers in consumer-
grade GPUs on the order of teraflops, utilizing these de-
vices should be an imperative for any developer at all con-
cerned with visualization performance. For interactively
rendering hundreds of nodes and thousands of edges, us-
ing OpenGL (even for an orthographic projection of two di-
mensional data) simply outclasses conventional framebuffer
canvases. On top of this, modern cards provide hardware
anti-aliasing. In future refinements we hope to exploit the
programmable nature of modern pipelines (vis-̈ı£¡-vis pro-
grammable vertex and pixel shaders) to enhance our use of
color and motion in the visualization at little or no perfor-
mance penalty.

Figure 2: The final state of the #nextmedia conference
(a graph with 308 nodes and 2448 edges). This can
be rendered and interacted with at a resolution of
1920x1160 with an acceptable framerate on an AMD
Radeon 4850 (a midlevel consumer card from early
2008). In fact, the system is likely CPU-limited due
to the overhead of display logic in Python. The raw
performance of GPUs running 3D APIs (even for 2D
projections) is clearly the future of intensive data
visualization.

4.4 Blackboxing layout
4.4.1 Why not concurrently develop a layout engine?

Tiresias as a whole is largely concerned with the initial ef-
fects of including time in a graph data structure and in de-
rived visualizations. As a result, we saw fit to export the task
of laying out specific keyframes to the extremely popular
GraphViz library. By and large, graph drawing is nowhere
near a “solved problem”, so we allowed the user to select the
system best suited to his or her dataset. In the absence of a
“magic bullet” for laying out arbitrarily complex graphs, we
opted to instead include a satisfactory default and a pars-
ing system for converting the output of many other layout
systems to OpenGL.

4.4.2 Parsing XDOT into OpenGL Primitives
GraphViz’s xdot file format is an extension on its dot format
to include spatial layout data as attributes in the existing
list of nodes and edges. The header defines a bounding box
and vector data in each node’s line of the file has both an
(x, y) coordinate pair and an (w, h) tuple sufficient for the
standard form of an ellipse, (x−w)2+(y−h)2 = 1. For edges,
we are given vertices for the arrow if the edge is directed and
a series of control points for a B-spline. The B-spline can be
easily rehydrated into line segments for a curve of arbitrary
smoothness via multiple passes of the following subdivision
algorithm:

def subdivide_bspline(flat_verts):

passes = 2

sub = [(flat_verts[2*i],flat_verts[2*i+1])

for i in xrange(len(flat_verts)/2)]

n = len(sub)-1

for j in xrange(1,passes+1):

old = sub

sub = [(0.0,0.0) for i in xrange((2**j)*n+1)]

for i in xrange(len(old)):

#make even point

if i-1 >= 0 and i+1 < len(old):

#interior points

sub[2*i] = (0.125*(old[i-1][0] +

6.0*old[i][0] +

old[i+1][0])

,

0.125*(old[i-1][1] +

6.0*old[i][1] +

old[i+1][1]))

else: #end point case

sub[2*i] = old[i]

#make odd point

if i+1 < len(old):

sub[2*i+1] = (0.125*(4.0*old[i][0] +

4.0*old[i+1][0])

,

0.125*(4.0*old[i][1] +

4.0*old[i+1][1]))

return sub

Creating the ellipses for the nodes in OpenGL is a trivial
loop around the ellipse using some basic trigonometry.

5. APPLICATION EXAMPLE:
SOCIAL AVIARY

One successful deployment of Tiresias was done concurrently
with its development. The deployment, referred to as “So-
cial Aviary” was conceived of by Hamilton Ulmer (a MS
student in Stanford Statistics) as a project for CS322: Net-
work Analysis. The idea comes from a desire to witness and
model interactions between individuals on a social network
that is directly tied to a real event. In essence, Social Aviary
aims to use Twitter as a raw data source for studying and
predicting emergent social dynamics in groups.

5.1 Tracking a New Community
A specific Twitter subgraph in Social Aviary is a TimeGraph

based around a specific #hashtag. A Twitter #hashtag (like
#python or #stanford) is a notation that can be used in
a Twitter post to denote its content and link it to a spe-
cific topic. Conference organizers have begun the practice
of pre-sharing a tag for their conferences to promote a pub-
lic discourse and encourage networking. We took advantage
of this usage pattern to get a sense of group dynamics and
network evolution. The TimeGraph for Social Aviary has
users represented by TimeNode objects and directed edges
that represent the Twitter relationship of “following” (where
every post by the person you’re following is shown on your
homepage). Formally, at any given time t, the graph of the
system contains nodes for all users who have used the con-
ference #hashtag at a time less than or equal to t. At times
we have jocularly referred to this structure as a “twit mob”.

5.2 Implementation
Social Aviary was implemented using Tiresias in the con-
figuration shown in Figure 3. In this architecture, a cen-
tral “update publisher” server was written for our local net-
work. This program, composed of about 30 threads of vari-
ous types, had the task of maintaining a single“watch list”of

users and search terms that it would broadcast Update ob-
jects for via PYRO1. This was accomplished satisfactorily
for a large number of individuals via simultaneous usage of
all three Twitter APIs. When the server starts up, it cre-
ates for each user a TimeNode derivative and pulls the current
state of the user into it via the web. This “initial pull” is not
broadcast as any client would be expected to pull that data
on startup while the publisher is more concerned with live
updates.

With the current versions of each user in hand, the server
enqueues them to be reexamined via the REST API for fol-
lower/followee changes. With these connectivity updates
(which currently must be obtained via polling), the pub-
lisher schedules them to be reexamined by a worker thread
in a few minutes (±25% random jitter to avoid pathological
congestion). During re-examination a new fresh copy of the
User is pulled from the web and has the old copy subtracted
from it via the previous mentioned procedure of TimeNode

differencing. The resulting TimeDiff object supports being
broken down into its component update types, which are
then converted to byte strings via the aforementioned “self-
serialization” idiom and can be broadcast accross the LAN
to any and all researchers who have subscribed to this node’s
ID.

For the Streaming API the process is more direct, although
the limitations of this new API require some trickiness. When-
ever an item is added or removed to the watchlist the pub-
lisher creates a persistent Streaming API connection objec-
tion with a callback option to report on any new posts by
those users or posts contain one of our interested search
terms (i.e. the conference #hashtags). Whenever we are
called back we simply construct the Update and enqueue
in the publisher’s broadcast queue. Two problems with
the Streaming API make life significantly more complicated.
First, connections silently go stale after an unknown period,
so we leverage a TTL (time to live) field inside the Streamer
object so that it can be destroyed and remade before this
happens. Secondly, currently the streaming API is limited to
following the new posts of at most 400 users. At the peak of
the two conferences we tracked our watchlist numbered over
800 users. To mitigate this limitation, during TTL-initiated
streamer reconstruction we simply select a random 400 user
subset of our entire watchlist. The random slices being al-
tered ever few minutes means we have good coverage, and
we need not miss any updates because they would get pulled
during the next REST API call. The only penalty is a sta-
tistically significant expected delay increase in notification
time.

Lastly, the Search API is only used on client resume when it
has to check for posts matching its #hashtag that occurred
while logging was deactivated. To do this quickly we simply
generate a few simultaneous calls for the top few pages of the
search results. We then perform hashset difference on the
owners of the new posts with the owners we know about from
before. New participants are added to the watchlist and a
new node is initialized in the TimeGraph node cache. When
visualized to the current time, the system shows the emer-
gence of new green nodes and edges flying into the graph.

1Python Remote Objects (PYRO), created by Irmen de
Jong. http://pyro.sourceforge.net

5.3 Results
The findings of the project are somewhat complicated and
are beyond the scope of this overview, but let it suffice to say
that after a few hiccups involving inconsistencies within the
Twitter API and unicode bugs Tiresias was able to provide
a solid and accurate record of our new #hashtag based sub-
graphs. We successfully logged a week’s worth of data on
both the Online Information/IMS 2009 Expo (#online09)
and the Toronto NextMEDIA conference (#nextmedia). Both
of these conferences deal with “new media”, so the concen-
tration of active Twitterers at the conferences was very high.
At our peak, we logged more than 800 users simultaneously.
We were able to do this comfortably with a ten minute
base refresh time on connectivity polling. A finer resolution
would have been nice, but even with the research whitelist
we obtained from Twitter we were limited to 20k REST API
queries per hour. At two queries per pull, plus the overhead
of initial pulls at startup, there is not too much room to
maneuver in the 20k limit. We managed to shunt as much
data collection as possible to the streaming process which
are not rate limited in the same way. These frees our REST
calls for data we cannot get anywhere else.

The data itself was very interested when viewed in the in-
teractive visualization. Figure 1 shows a few screenshots of
the evolution of #nextmedia. It is interesting to read the
stream of excited posts as a conference starts to heat up
while watching the graph itself expand very quickly. Con-
ferences like the ones we model tend to have a core inter-
ested group (perhaps planners/employees of the organiza-
tions that conduct them) that exists long before the confer-
ence starts. The graph simply explodes the day before the
conference, and in the process of the conference the graph
really does become more cohesive. Using Tiresias helps us
to see that interaction on Twitter really can mirror real-life
events in some cases.

6. FUTURE WORK
We have many ideas on how to improve Tiresias moving
forward.

Time-rendering optimizations Several optimizations are
possible with regards to rendering the state of the
graph at a given time. For a TimeNode, if we maintain
a dirty flag and allow old updates to be inserted and
sorted into the array we can use a smart rewind/fast-
forward system to avoid almost ever having to move
through the entire update array. Additionally, we are
contemplating a callback function supplied to each node
during rendering that would allow the graph object to
update along with the node, largely saving us the ex-
tra step of re-traversing it at the end. These optimiza-
tions, if perfected, could help us support model side
graphs on the order of millions of nodes and edges.

Domain-specific metrics We are currently considering an
API for allowing the client a standardized way of sup-
plying new metrics to the visualizer. Such an API
would allow the client to tie visual attributes like size
and color to metrics within his or her own TimeGraph

object. An example of a metrics plugin for Twitter
would be a coloring mode that uses a statistical profile
of spammers to color the graph by likelihood of being

Figure 3: An application of Tiresias to log exten-
sive sub-networks on Twitter. One persistent pub-
lisher server (cleared by Twitter for the API re-
search whitelist) maintains a watchlist of the in-
dividual researchers’ TimeNode components and can
alert them when they should expand their graphs.
The publisher-subscriber pattern makes this scal-
able, as the watchlist can be divided between ad-
ditional publishers on the LAN without any modifi-
cation to the researcher clients. Performance in this
configuration is very good, and parameters can be
tuned to make optimum use of Twitter API policy.

a spammer. The basics of such metrics are already im-
plemented (by pressing the space bar in the viewer),
but an intuitive API would allow for optimal coupling.

Intuitive real-time visualization Real-time visualization,
while not currently supported, was designed for during
development. New keyframes can easily be added to
a TimeGraph, and an automatic “play button” on the
visualizer would show the evolution of these graphs in
real time. The main impediment to this in the cur-
rent configuration is the use of GraphViz’s “dot” lay-
out engine. For graphs on the order of 200 nodes and
1500 edges, “dot” can take many minutes to lay out
the graph. Making it easier for the user to configure
a layout engine perfect for his or her task is a goal
moving forward, and progress on this goal should help
make real-time visualization a no-brainer.

New interaction techniques Interacting with graphs is
still a very new phenomenon. Clicking and dragging
and the mouse wheel zoom are a good start but there
should be a lot more fertile territory to explore. Some
of this exploration should revolve around common graph
algorithms. For example, it should be intuitive to se-
lect a series of nodes and see the shortest path or min-
imal spanning tree involving them. Also, being able to
click a node and roll the mouse wheel to highlight each
level of the connected set would go a long way towards
helping the user make sense of a complicated graph.
Lastly, allowing the user to maintain a specific “inter-
est set” to observe through time would be a powerful
“role-playing” tool for building intuition about a par-
ticular system’s functioning. The intersection of social
networks, graph theory, and Human-Computer Inter-
action makes this task in particular an exciting avenue
of useful discovery.

7. CONCLUSION
With how much of our increasingly data-centric world can
be expressed using a time-sensitive graph it seems rather
shocking that there have not been more academic resources
expended in the pursuit of modeling and visualizing their
uniquely useful properties. Tiresias exists merely as a first
step in that direction. The rise of highly-concurrent com-
puters capable of immense visual detail makes today’s tech-
nology highly apt for the type of analysis that Tiresias aims
to achieve. On top of this, concurrent advances in social
and communications networks, graph analysis and machine
learning offer us the opportunity to learn much more infor-
mation from many more interesting datasets. Tiresias offers
both an efficient, easy-to-deploy data structure and an in-
tuitive, adaptable visualization as accessible building blocks
for future research and analysis.

8. REFERENCES
[1] Tim Dwyer and Yehuda Koren. Dig-CoLA: Directed

Graph Layout through Constrained Energy
Minimization. INFOVIS, 2005.

[2] Sumit Ganguly and Barna Saha. On Estimating Path
Aggregates over Streaming Graphs. Proceedings of The
17th International Symposium on Algorithms and
Computation (ISAAC), 2006.

[3] Jure Leskovec, Jon Kleinberg, and Christos Foloutsos.
Graph Evolution: Densification and Shrinking
Diameters. ACM Transactions on Knowledge Discovery
from Data, 1, March 2007.

[4] Ryan Noon, Matt Jones, and Rohan Puranik. CERES:
A new approach to data visualization and exploration
leveraging the power of Python and modern GPUs.
Stanford University, CS194 Software Faire, 2009.

[5] Daniel Fleischer Ulrik Brandes and Thomas Puppe.
Dynamic Spectral Layout of Small Worlds. J. Graph
Algorithms Appl., 2007.

[6] Todd L. Veldhuizen. Dynamic Multilevel Graph
Visualization. December 2007.

